Abstract

Complex approximation with a generalized Remez algorithm is used to design FIR digital filters with nonconjugate symmetric frequency responses. The minimax criterion is used and the Chebychev approximation is posed as a linear optimization problem. The primal problem is converted to its dual and is solved using an efficient, quadratically convergent algorithm developed by Tang. Optimal Chebychev real-coefficient FIR filters with group delay smaller than half the filter length can be designed with slightly better magnitude responses compared to linear-phase filters. Linear-phase filters can also be designed when the group delay is specified to be half the filter length. Most importantly, the design method is capable of producing filters with complex coefficients that approximate nonconjugate symmetric frequency responses.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.