Abstract

This paper presents a scheme of designing finite-time high-order sliding mode (HOSM) observer which provides some essential requirements to be used in a sensorless control. The observer design technique is proposed to estimate some key states in a Multi-Input Multi-Output (MIMO) proton exchange membrane fuel cell (PEMFC) in a finite-time. Since variation of the load current deeply affects the life time of the cell, estimation and control of oxygen excess ratio (λO2) is suggested to detect and prevent the damage. As a practical application, the observer reconstructs oxygen excess ratio using measurable variables, such as the compressor angular speed, the supply, the return manifold pressures and the load current. The estimation is performed to keep stability without need of any transformation to a canonical form in a finite time. The designed finite-time observer is shown with some increases in the response time indices, improves the accuracy whilst guarantees a fast convergence with respect to using flow sensors. Simulation results verify the achievements whilst signify the fast response as well as robust against uncertainties and disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.