Abstract
First-principles calculations are performed to study the structural, electronic and magnetic properties of Co-doped SnO2 nanosheets (NSs), using the generalized gradient approximation (GGA) plus Hubbard U method. We find that two Co atoms have a clustering tendency and the magnetic interactions between them exhibit a ferromagnetic (FM) coupling, while the appearance of an oxygen vacancy (VO) turns it into an antiferromagnetic (AFM) order. When the Li atom is codoped into Co-doped SnO2NS, the interactions between Co atoms are rehabilitated to FM coupling with a high Curie temperature (TC) of 850 K. The electronic structure analysis reveals that this is mainly attributed to the hole-induced double-exchange mechanism from s–d hybridizations between Li and Co, which finally activates a long-range FM coupling between two Co atoms. These findings could be very useful in nano-material design for spintronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.