Abstract

AbstractImproving the activity and stability of Fe/N/C catalyst in oxygen reduction reaction (ORR) is a huge challenge in the commercial application of polymer electrolyte membrane fuel cells (PEMFCs). In the past decade, there have been significant break‐throughs in the performance of transition metal catalysts, but little progress has been made in their stability. Herein, a zinc‐based zeolite imidazole framework (ZIF‐8) and tungsten carbide engaged strategy was reported to prepare Fe/N/C catalyst. Particularly, physical vapor deposition (PVD) was used to trap tungsten carbide nanoparticles with particle size of less than 3 nm limited into the FeNC catalytic micropores to synthesis composite catalyst (WC@FeNC). Compared with original Fe/N/C cata‐lysts, confined WC nanoparticles in Fe/N/C porous has improved the ORR activity (2.7 mA mg−1 vs. 2.2 mA mg−1 at 0.85 V vs. RHE) as well as stability (decay 18.7 mV vs. 21.6 mV after 10 h charged) in 0.1 M H2SO4. This work puts forward some unique insights for improving the stability of transition metal oxygen reduction catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call