Abstract

Bolted lap joints allow structural assemblies to be made. The answer to requirements, both static and dynamic, depends on the joint behaviour. Bolted joints are a primary source of energy dissipation in dynamic built-up and space structures among others. This paper presents an analysis of a bolted lap joint, subjected to a relative displacement after applying a pre-stress on the bolt in order to characterise the joint behaviour. For this purpose a 3D modelling is made by means of finite elements, using design techniques of experiments (DOE) to fit constitutive contact parameters. The theoretical results relative to elasto-plastic hysteresis cycles of the joint are experimentally validated. Finally, the preload effect and the magnitude of the displacement on the non-linear joint behaviour are analysed to determine equivalent stiffness and dissipated energy in the hysterical loops of the joint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call