Abstract

Biomass gasification is a thermo-chemical process widely accepted as a future technology for syngas production. Numerous types of gasification systems have been proposed and studied in the past. Recent developments have shown that Dual Fluidized Bed (DFB) gasifier are commercially more attractive for production of the hydrogen-rich syngas as compared to others. DFB gasification system is very complex in construction and operation. Hence, a detailed understanding of hydrodynamics in such systems is essential for optimum design and scale-up. Hydrodynamics of DFB gasifier mainly depends on the Solid Circulation Rate (SCR). SCR is governed by riser velocity, gasifier velocity, and loop seal velocities. In present work, Central Composite Rotatable Design (CCRD) based Response Surface Method (RSM) was employed to determine the effect of riser velocity, gasifier velocity, recycle chamber velocity, supply chamber velocity, and vertical supply chamber velocity and their interaction on the SCR. Adequacy of regression model developed from RSM was confirmed using ANOVA analysis. The value of coefficient of determination (R2) of the model was 0.9729, which confirms model represents the experimental results satisfactorily. Riser and recycle chamber velocity were found to be most significant parameters, plays an important role in SCR in DFB gasifier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call