Abstract
We present an application of design-of-experiment (DoE) based history matching as an approach to reduce and investigate parameter uncertainties in finite-element models for repositories of high-level radioactive waste. We combine experimental data from the FE-experiment at the Mont Terri underground research laboratory in Switzerland with thermo-hydro-mechanical modeling using the open-source package OpenGeoSys. Uncertainties were reduced by an initial parameter screening to find heavy hitters and an experiment-matching procedure using Monte-Carlo sampling on a Gaussian proxy model to fit the error between modeling response and the experiment. Furthermore, we performed a global sensitivity analysis based on the proxy model, demonstrating the spatial impact of parameter sensitivities. Very good agreement between the experimental data and the model was found for the temperature response, whereas the pressure match hints at a significant remaining gap in the physical models and/or structure. This gap could not be filled within the scope of our contribution and needs further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.