Abstract

The Quantum Dot Cellular Automata (QCA) is an emerging quantum electronics technology in which quantum cells are the fundamental building blocks. In this work, a Binary to Gray (BTG) code converter design is proposed and implemented using the QCA Designer Tool. This code converter design requires fewer cells than earlier designs and also increases the converter’s implementation bit size to five. The primary objective of this proposal is to introduce a BTG code converter design that excels in temperature stability and energy efficiency. The cell count in the proposed converter design for two-bit, three-bit, and four-bit is decreased by 68.55 %, 66.52 %, and 67.77 %, respectively and the overall area improved by 46.15 %, 52.17 %, and 57.58 % for 2- bit,3-bit and 4-bit, respectively by considering a latency of 0.75. The five-bit BTG has an area of 0.20 µm2 with a cell count of 141 and a latency of 0.75. To validate the functionality of the proposed design, extensive simulations were carried out using the QCA Designer tool, QCA DesignerE tool, and QCA Pro tool respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.