Abstract

As the power dissipation density of electronic equipment has continued to increase, it has become necessary to consider the cooling design of electronic equipment in order to develop suitable cooling techniques. Almost all electronic equipment is cooled by air convection. Of the various cooling systems available, natural air cooling is often used for applications for which high reliability is essential, such as telecommunications. The main advantage of natural convection is that no fan or blower is required, because air movement is generated by density differences in the presence of gravity. The optimum thermal design of electronic devices cooled by natural convection depends on an accurate choice of geometrical configuration and the best distribution of heat sources to promote the flow rate that minimizes temperature rises inside the casings. Although the literature covers natural convection heat transfer in simple geometries, few experiments relate to enclosures such as those used in electronic equipment, in which heat transfer and fluid flow are generally complicated and three dimensional, making experimental modeling necessary. Guglielmini et al. (1988) reported on the natural air cooling of electronic boards in ventilated enclosures. Misale (1993) reported the influence of vent geometry on the natural air cooling of vertical circuit boards packed within a ventilated enclosure. Lin and Armfield (2001) studied natural convection cooling of rectangular and cylindrical containers. Ishizuka et al. (1986) and Ishizuka (1998) presented a simplified set of equations derived from data on natural air cooling of electronic equipment casings and showed its validity. However, there is insufficient information regading thermal design of practical electronic equipment. For example, the simplified set of equations was based on a ventilation model like a chimney with a heater at the base and an outlet vent on the top, yet in practical electronic equipment, the outlet vent is located at the upper part of the side walls, and the duct is not circular. Therefore, here, we studied the effect of the distance between the outlet vent location and the heat source on the cooling capability of natural-air-cooled electronic equipment casings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call