Abstract

The present study is focused on the fabrication of electrochemical sensor based on electrochemically synthesized titanium nanoparticles (TiNPs) supported on multi-walled carbon nanotubes (MWCNTs) and its application in electrochemical quantification of aminotriazole. The designed electrochemical sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The voltammetric results indicated that the combination of TiNPs and MWCNTs produced remarkable enhancement in electrocatalytic property towards the determination of aminotriazole. Various kinetic parameters like charge transfer resistance (Rct), apparent electron transfer rate constant (kapp), number of electrons transferred (n), electron transfer coefficient (α), formal redox potential (E0), standard heterogeneous rate constant (k0), surface coverage (Γ), diffusion coefficient (D), and catalytic rate constant (k) were evaluated. Based on the designed sensor, aminotriazole exhibited a linear correlation in the concentration range of 0.01–2.0 and 0.01–1.3 μg mL−1 with low detection limits of 0.166 and 0.267 ng mL−1 by AdLSV and DPAdSV, respectively. The fabricated sensor exhibited good accuracy, acceptable stability, and high efficacy for quantitative determination of aminotriazole in some real samples with notable recoveries ranging from 97.8 to 100.10%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call