Abstract

ABSTRACT In this paper, an electrochemical sensor array utilizing metal materials was designed, and its applications in sugar content analysis from mixtures were conducted. The system adopts the conventional three-electrode system. Cyclic Voltammetry (CV) and Amperometric i-t Curve (i-t) were utilized as testing methods. The curve of the relationship between current and time could be obtained by i-t scanning. The relationship between the sugar concentration and the current density of the sensor was developed. The data was analyzed using multiple linear regression (MLR). The sugar mixtures were automatically measured by using this instrument. CV and i-t methods were utilized to carry out the experiments. Different scan rates CV results showed that it was a typical diffusion controlled electrochemical process. Different sugars CV results showed that different electrodes for CV experiments with different sugars produced different anode peak potential and current. Control experiments showed that neither Na2CO3 nor NaCl had any effect on the experimental results. The developed system has good stability and repeatability. I-t fitting results indicated that there was a good linear relationship between system responses and sugar concentrations. The linear range was between 0.14 mM and 4.76 mM. A python-based MLR model was developed for sugar content determination. Results were obtained by solving the system of equations, indicating that this method presented content determination abilities for sugar mixtures. The method proposed in this paper had the advantages of easy operation, low cost, rapid analysis, and low detection limit. It provided a new idea for sugar quantitative determination in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call