Abstract
In the present era, reversible logic designs play a very critical role in nanotechnology, low power complementary metal-oxide semiconductor (CMOS) designs, optical computing and, especially, in quantum computing. High power dissipation and leakage current in deep submicron technologies is a severe threat in applications created today. As a consequence, design of datapath elements in reversible logic has gained much importance. In this study, a novel design of binary coded decimal (BCD) adder/subtractor in reversible logic has been proposed. As a further optimization of the proposed reversible decimal design, carry skip (CSK) logic is used for reversible ripple carry adder stages. This reduces delay but at the expense of little hardware. The proposed BCD adder/subtractor and its optimized version are designed using structural VHDL and simulated using ModelSim 6.3f. Performance analysis reveals that the proposed BCD design demonstrates reductions in gate count, garbage outputs and constant inputs of 30.5%, 46% and 28%, respectively, and its optimized version exhibits 19.4%, 32.4% and 16% reductions in gate count, garbage outputs and constant inputs compared to the design in Ref. 14 [V. Rajmohan, V. Renganathan and M. Rajmohan, A novel reversible design of unified single digit BCD adder–subtractor, Int. J. Comput. Theor. Eng. 3 (2011) 697–700].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.