Abstract

This paper presents a fully integrated, low transmit-power and high-efficiency 2.4 GHz class-E power amplifier (PA) in TSMC 0.18 μm CMOS process for low-power transmitters such as wireless sensor networks (WSN). In this paper, a new output load has been proposed. Also, analytical design equations have been included to design an efficient low power circuit. This PA, employs the pad capacitance and bond-wire inductance of the output node, for satisfying class-E zero-voltage switching (ZVS) condition and matching the antenna's 50 Ω resistance. By using bond-wire inductance instead of inductor in the output filter, smaller chip size and higher efficiency has been achieved compared to other works for low transmit-power applications. Also, the effectiveness of bulk-drive technique on faster switching and increasing efficiency have been evaluated. It has been proved that this technique leads to increase the efficiency of switching PAs. This PA delivers a range of output power from 2.7 to 7.2 dBm with a supply voltage range from 500 to 850 mV while achieving overall power efficiency range of 57.3---60.7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call