Abstract

A pure and stable copper(I)-based donor–Cu(I)–acceptor triad was synthesized featuring an efficient stepwise photoinduced charge separation upon excitation of the copper(I) metal-to-ligand charge transfer (MLCT) excited state. The heteroleptic copper(I) complex is composed of two phenanthrolines, one substituted by a naphthalene bisimide (NDI) as electron acceptor and the other by a ferrocene (Fc) as electron donor. The synthesis of two dyads with different spacers between the electron acceptor and Cu(I) center and the charge separation mechanism and dynamics were determined by electrochemical and femtosecond transient experiments, which show that two parallel electron-transfer routes occur from the unrelaxed 1MLCT and flattened 3MLCT states with time constants of 540 fs and 162 ps, respectively. The final charge-separated state Fc+–Cu(I)–NDI– has a 34 ns lifetime in acetonitrile and is formed with a quantum yield of 90% upon excitation on the MLCT transition of the copper(I) complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.