Abstract

Ab initio molecular orbital calculations have been applied to the study of the three-stage zeolite-catalyzed hydrogenation of CO2 to methanol. The results present strong evidence that appropriate chemical modifications to ZSM-5 can lead to significantly lower energy barriers for the three component reactions, that is, hydrogenation of CO2, HCO2H, and CH2O. Zeolites incorporating either Na+ or Ge are more effective catalysts than conventional acidic zeolites for the hydrogenation of CO2 to give HCO2H, but amine-based zeolites do not lead to significantly lower barriers for any of the three hydrogenation reactions. However, we predict that when all three features, namely, Na+, N, and Ge, are incorporated in the zeolite, there is a dramatic improvement in catalytic activity for all three reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.