Abstract

The design of a dual-polarized microstrip series-fed linear traveling-wave array is described in this paper. The array is composed of two identical subarrays formed by cascading an equal number of four-port aperture-coupled cross-patch elements and terminated on a two-port radiating matched load. By properly exciting the array, dual linear or circular polarization can be accomplished and by virtue of the symmetric arrangement of the antenna cross-polarization is annihilated. A straightforward design strategy is proposed for the synthesis of a desired current distribution along the array antenna. Some proof-of-concept linear arrays are developed and the corresponding numerical results, obtained through a full-wave approach based on the method of moments (MoM), are provided. As an independent validation, supplementary analyses by the finite integration technique (FIT) are also reported. Very close agreement is found between prescribed and synthesized array performance, which qualifies the proposed design approach as an accurate and effective tool for the synthesis of series-fed aperture-coupled patch arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.