Abstract

With the rapid development of modern optics, optical elements have become an indispensable part of an optical system. A metasurface is a nanostructure composed of arrays of sub-wavelength scatterers and is widely used due to its simple structure, thin thickness, easy integration, and high utilization rate. This paper designs a polarization-multiplexed transmissive metasurface lens in the visible light band 690 nm and near-infrared light band 880 nm. The metasurface lens combines the x-polarized lens design with the y-polarized lens design to realize three metasurface lenses with dual wavelength and different polarization states under the same metasurface. The metasurface lenses are: a coaxial confocal metasurface lens with the focus length of f1=f2=7 215 nm, an off-axis metasurface lens with the focus length of f1=f2=7 221 nm and with a displacement of xd=±4 000 nm, and a coaxial metasurface lens with the focus length of f1=7 000 nm and f2=10 000 nm, respectively. They have not only a high numerical aperture of 0.8 but also a good focusing capability with a full width at half maximum close to diffraction limit, and their space utilization is also improved. This compact and highly numerical aperture and high spatial utilization of dual-wavelength polarization multiplexing metasurface design provides an effective solution for the development of focusing lens and has unique potentials and advantages in fluorescent microlens, optical imaging, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.