Abstract

Drainage blankets (DB) are used for leachate recirculation in bioreactor landfills and consist of highly permeable material placed over a large area of the landfill with the leachate injection pipe embedded in the material at specified locations. DBs are generally installed at different depth levels during the waste filling operations. Very limited information is reported on performance of DBs, and that which exists is based on a small number of field monitoring and modeling studies. A rational method for the design of landfills using DBs has not been developed. This study performs a parametric analysis based on a validated two-phase flow model and presents design charts to guide the design of DBs for given hydraulic properties of MSW, the leachate injection rate and the dimensions and locations of the DB as measured from the leachate collection and recirculation system (LCRS) located at the bottom of the landfill cell. Numerical simulations were performed for the two established MSW conditions: homogeneous–isotropic and heterogeneous–anisotropic waste. The optimal levels of leachate saturation, wetted width, wetted area and developed pore water and pore gas pressures were determined, and design charts using the normalized parameters were developed. An example is presented on the use of design charts for typical field application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call