Abstract

We have theoretically designed a double-lattice photonic crystal surface-emitting laser (PCSEL) based on triangular and circular holes. In the design, porous-GaN which has the properties of lower refractive index and high quality stress-free homo-epitaxy with GaN, was first proposed to be the cladding layer for GaN-PCSEL. The finite difference-time domain (FDTD), the plane wave expansion (PWE), and the rigorous coupled-wave analysis (RCWA) method were employed in the investigation. Our simulations achieved a radiation constant of up to 50 cm-1 and a slope efficiency of more than 1 W/A while maintaining a low threshold gain. We conducted a systematic study on the effects of the filling factor, etching depth, and holes shift, on the performance of the PCSEL. The findings indicate that increasing the filling factor improves the radiation constant and slope efficiency. Asymmetric hole patterns and varying etching depths have a similar effect. The introduction of asymmetric patterns and a double lattice in the photonic crystal breaks the symmetry of electric fields in the plane, while different etching depths of the two holes break the symmetry in the vertical direction. Additionally, altering the shift of the double lattice modifies the optical feedback in the resonators, resulting in variations of cavity loss and confinement factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call