Abstract
This work discusses the design of a nonlinear controller for a single mass model of a variable speed wind turbine without measurement of wind speed. Dynamic load on the drive train shaft plays a vital role in turbine lifespan. So the design of the nonlinear controller should pay more care in mitigation of transient load on the drive train shaft. The objective of the controller is to extract the optimal power with limited dynamic loads on the shaft. The above objectives are satisfied by tracking the reference rotor speed which is done by a nonlinear controller. Effective wind speed is obtained by Modified Newton Raphson (MNR), which is used for deriving the reference rotor speed. In this paper, a nonlinear controller, i.e. double integral sliding mode controller (DISMC) is proposed for the single mass model of a wind turbine at partial load region (below rated wind speed). Lyapunov candidate function is used for analyzing the stability of the proposed controller. The performance of the proposed controller is compared with conventional integral sliding mode controller (ISMC) in terms of performance parameters. The robustness of the controllers are analyzed in the presence of different input disturbances and different wind speed profiles. From results, it is found that DISMC can able to accommodate various input disturbance level up to 5kNm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.