Abstract

Biomolecular channels on the cell membrane are essential for transporting substances across the membrane to maintain cell physiological activity. Artificial transmembrane channels used to mimic biological membrane channels can regulate intra/extracellular ionic and molecular homeostasis, and they elucidate cellular structures and functionalities. Due to their program design, facile preparation, and high biocompatibility, DNA nanostructures have been widely used as scaffolds for the design of artificial transmembrane channels and exploited for ionic and molecular transport and biomedical applications. DNA-based artificial channels can be designed from two structural modules: DNA nanotubes/nanopores as transport modules for mass transportation and hydrophobic segments as anchor modules for membrane immobilization. In this review, various lipophilic modification strategies for the design of DNA channels and membrane insertion are outlined. Several types of DNA transmembrane channels are systematically summarized, including DNA wireframe channels, DNA helix bundle channels, DNA tile channels, DNA origami channels, and so on. We then discuss efforts to exploit them in biosensor and biomedical applications. For example, ligand-gated and environmental stimuli-responsive artificial transmembrane channels have been designed for transmembrane signal transduction. DNA-based artificial channels have been developed for cell mimicry and the regulation of cell behaviors. Finally, we provide some perspectives on the challenges and future developments of artificial transmembrane channel research in biomimetic science and biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call