Abstract
The bioluminescence reaction, which uses luciferin, Mg(2+)-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase structure and assay conditions. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make three separate mutant enzymes with a single bridge. Moreover, C(81)-A(105)C mutant luciferase was modified and successfully secreted to the extracellular medium. By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red and the optimum temperature of activity was also increased (up to 10 °C more than wild type). Amongst mutants with a disulfide bridge, P(451)C-V(469)C and L(306)C-L(309)C mutants exhibit a single peak in the red region of the spectrum at pH 7.8. It is worthwhile to note that with the design of a secreted luciferase, the increased optimum temperature, thermostability and emission of red light might make mutant luciferase suitable reporters for the study of gene expression in high through-put screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Photochemical & Photobiological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.