Abstract

This paper investigates the problem of distributed interval estimation for multiple Euler–Lagrange systems. An interconnection topology is supposed to be strongly connected. To design distributed interval observers, the coordinate transformation method is employed. The construction of the distributed interval observer is given by the monotone system theory, and the stability is analyzed by the Lyapunov stability theory. Unlike the current works, each sub-interval observer has its own gain; in addition to this, additional observer gains are used to reduce the conservatism of design. The gains of all sub-interval observers are determined by both the monotone system theory and the Lyapunov stability theory. Finally, a simulation example verifies the feasibility of the presented distributed interval observers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.