Abstract
In terms of sustainable power semiconductors, the embedding of an electrostatic discharge (ESD) protection circuit in an integrated circuit (IC) is an important aspect. In order for the semiconductor circuit to operate continuously or stably, a sufficient protection circuit against external surges must be configured. The purpose of this thesis is not only to effectively operate the low-dropout (LDO) regulator according to the load current, but to also secure high reliability against ESD situations by embedding an ESD protection circuit at the IC level. Moreover, the existence and nonexistence of an ESD protection circuit at the IC level is directly related to reliability. The proposed LDO regulator has high reliability against ESD situations using an embedded silicon controlled rectifier (SCR)-based ESD protection circuit in the I/O clamp and power clamp. The results revealed that the LDO regulator can not only effectively control the output voltage according to the load current, but it can also stably maintain the output voltage against the ESD surge. Moreover, the proposed LDO regulator with an embedded ESD protection circuit implemented in a 0.13 μm BCD process maintained an undershoot voltage of 21 mV and overshoot voltage of 19 mV for a load current of 300 mA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.