Abstract
When distributors and wholesalers seek help with issues relating to inventory management, they are usually concerned about an increasing level of out-of-stocks or over stocking. Out of stocks are leading to sales loss and customer service complaints. Over-stocks are resulting in slow inventory turnover and a buildup of dead inventory. In fact, out-of-stocks and overstocks are actually a flip side of the same inventory management coin. Any effective initiative to resolve these issues must address core structural causes of these inventory management problems. Superior inventory management begins with timely, accurate, detailed demand forecasts. Over last decade demand forecasting has played a prominent role in the corporations worldwide. Corporate executives have spent millions of dollars and invested thousands of man-hours trying to improve methods used & complicate it more. In each case little attention was paid to the integration between drivers, inputs and demand forecast (Harrison & Qizhong, 1993). In the face of all these advancements in hardware and software forecast error still remain high. The inaccuracy in the forecast is due to previous researchers focused on statistical methods and their improvements only. There was no effort on the modeling of the problem and how to build an expert system to interact properly with the dynamic changes of the supply chain (Ajoy & Dobrivoje, 2005). The forecasting model is not treated as enterprise system has its specifications and constraints which are modeled and simulated. In this research we propose a design of expert demand forecast system which is designed after deep understanding of demand cycle within dynamic supply chain and interaction between different parameters within the supply chain. It is utilizing Bayesian vector auto regression, restricted vector auto regression, and kernel fisher discriminant analysis (Scholkopf & Smola, 1998), (Scholkopf et al., 1999) with improved genetic algorithm to filter, analyze inputs and factors affecting demand along with demand history and then generate baseline and operational forecasts. This model proposes new mathematical and expert modeling methodology to generate forecasts. We used a practical case study from international FMCG (Fast Moving Consumer Goods) industry using over 1000 product types and results show that a significant forecast accuracy and other supply chain key performance indicators improvements over one year months rolling. The proposed model is composed of the integration between statistical and intelligent methods with expert input to generate more accurate demand forecasts. The inputs to the Source: Expert Systems, Book edited by: Petrica Vizureanu, ISBN 978-953-307-032-2, pp. 238, January 2010, INTECH, Croatia, downloaded from SCIYO.COM
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.