Abstract
In order to improve the library's ability of cross-platform information retrieval and data scheduling and distribution, a library cross-platform information retrieval system based on digital twin technology is designed. Using data warehouse decision support and data source structured query methods, the spectral characteristics of Library cross-platform information resources are extracted. Using the method of Hadoop data parallel loading, the library cross-platform operation data is divided into decision-making data, computing resource pool data, and Hadoop parallel loading data. A library cross-platform information digital twin parallel retrieval and information fusion feature matching model is established, and the retrieval channels are allocated through multiple complex and balanced task scheduling sequences. According to the queue configuration model of Library cross-platform information retrieval, the optimization design of Library cross-platform information retrieval system is realized. The simulation test results show that the designed system has good recall ability of cross-platform information retrieval data, and improves the utilization rate of cross-platform resources and the dynamic scheduling ability of online resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Computational Intelligence and Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.