Abstract

AbstractThe quality of pharmaceutical products is critical for human health. Drug development requires tools to assess the presence of degradation products and contaminants during the manufacturing and storage processes. Accelerated stress degradation and kinetic studies play a vital role in predicting final product stability. This work describes the design of potentiometric sensor based on copper microfabricated electrodes for in‐line tracking the degradation kinetics of neostigmine. The proposed electrochemical technique provides a continuous profile for the hydrolysis of NEO under different temperatures and pH. The hydrolysis activation energy was found to be 18.88 kcal mol−1 which was aligned with the reported hydrolysable ester values. Consequently, the kinetic data analysis is crucial to predict the optimum analysis and storage conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.