Abstract

In this paper, the design method of optimal control for the conveyor-based transport system, when the quality criterion contains a variable delay in the controls, has been considered. The task of optimal control has been set and the Hamiltonian of the system has been written taking into account the delay in the controls. In the design of optimal control by the flow parameters of the transport system, a control object model containing partial differential equations was used. The mechanism that forms a variable value of the transport delay in the flow parameters of the transport system has been shown. Two characteristic modes of the conveyor system functioning are considered as follows: a transient state, when the value of the linear density at the transport system output is determined by the initial distribution of material along the transport route, and a steady-state state, when the value of the linear density at the transport system output is determined through the values of the movement speed of the conveyor belt and the intensity of the material at the conveyor section input. Equations that make it possible to calculate the controls of the flow parameters of the transport system for which the Hamiltonian of the system satisfies the Hamilton–Jacobi equation have been provided. Controls of the flow parameters are synthesized for the case when the phase coordinate does not reach the limits. It is shown that for the synthesis of controls, it is necessary to predict the magnitude of the output flow from the transport system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call