Abstract

This paper develops a methodology for designing a control system composed of a linear time-invariant system interconnecting with multiple decoupled time-invariant memoryless nonlinearities. The design problem is to determine parameters of the system such that its outputs and the nonlinearity inputs always remain within prescribed bounds for all exogenous inputs whose magnitude and slope satisfy certain bounding conditions. By using Schauder fixed point theorem, we show that a design associated with a linear system is also a solution of the problem. Based on this, we further develop surrogate design criteria in the form of the inequalities that can readily be solved in practice. Sufficient conditions for the solvability of such inequalities are given for deadzone and saturation. To show the usefulness and the effectiveness of the methodology, a design example of a load frequency control system with time delay is carried out where deadzone and saturation are taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.