Abstract
In modern power systems, phasor measurements are expected to deal with challenging conditions, e.g. fast dynamics and high distortion levels. Taylor-Fourier Multifrequency models represent a promising solution, but their performance is strongly related to the accurate extraction of the signal spectral support. In this context, this paper proposes an enhanced method for support recovery that exploits the inherent block-sparsity properties of electrical signals. The proposed method is fully characterized in diverse and distorted test conditions, inspired by reference standards and real-world scenarios. The comparison against another Compressive Sensing based approach confirms the significant improvement in terms of both recovered support exactness and synchrophasor measurement accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Open Journal of Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.