Abstract
In designing modern friction materials that are normally made of composite materials, a more systematical approach is needed in order to select the most appropriate composition of raw materials for specific applications. Here, knowledge-based design methodology has been formulated for composite brake design application, that consists of: design database generation from experiments, metamodelling, and global optimization processes. The objective function has incorporated, among others, the uncertainties introduced in the experimentally-obtained design database, so that providing the optmization results with the information of variation. The application of the methodology has been demonstrated to two cases, i.e. train brake and motorcycle brake pad, with the optimization results close to the targetted values and the information of output variation, as intended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.