Abstract

This article reports a novel inset resonator configuration for coaxial filter applications with quasi-elliptic responses. The design and analysis of the inset resonator are discussed in detail and accurately modeled as a capacitively-loaded stepped-impedance half-wavelength resonator featuring more compactness, high quality factor, and enhanced spurious responses in comparison with conventional half-wavelength and combline resonators. Additionally, the operating frequency can be tuned intrinsically through the displacement of the coaxial resonator, eliminating the need for any additional tuning elements and maintaining a stable quality factor. Two quasi-elliptic inset resonator type filters are implemented in planar and longitudinal coupling configurations, respectively. The first takes the form of a folded four-pole 2.93 GHz filter with two symmetrical transmission zeros. The fabricated filter has a compact structure of 29.76 cm 3, an insertion loss better than 0.73 dB, a return loss better than 18 dB, and a wide spurious-free band up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$3.5\cdot f _{0}$ </tex-math></inline-formula> . The second inset-type quasi-elliptic filter is realized in a longitudinal inline arrangement. An example of a 2.53 GHz three-pole filter is presented with a closely-positioned transmission zero, wide spurious-free band ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\approx 3\cdot f _{0}$ </tex-math></inline-formula> ), and a very compact structure of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$55.7\times 33\times 33$ </tex-math></inline-formula> mm 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.