Abstract
The application of the combination of unmanned aerial vehicles (UAVs) and artificial intelligence is a hot topic in the intelligent inspection of substations, and meter reading is a very challenging task. This paper proposes a method based on the combination of YOLOv6n object detection and Deeplabv3[Formula: see text] image segmentation and performs post-processing on the segmented images to obtain meter readings. First, YOLOv6n is used to detect the meter area of the aerial image and classify the meters. Second, the detected meter images are fed into the image segmentation model. The backbone network of the Deeplabv3[Formula: see text] algorithm is improved by using the MobileNetv3 network, which not only effectively extracts pointers and scales, but also makes the model more lightweight. Third, License Plate Recognition Network (LPRNet) is used to recognize digital meter images. In order to solve the problem of inaccurate pointer meter readings, to begin with, the segmented image is corroded; in addition, the circular dial area is flattened into a rectangular area by concentric circle sampling method. Finally, the meter reading is calculated by the position of the pointer, the scale and the total range of the meter. The post-processing part uses numba to optimize the inference speed. The experimental results show that in two datasets, The mean average precision of 50 (mAP50) accuracy of the YOLOv6n model using this method reached 99.71% and 98.60%, respectively, and the inference speed of a single image was 17.1[Formula: see text]ms and 13.2[Formula: see text]ms, respectively. The mean intersection over union (mIoU) of the image segmentation model reached 82.00%, 74.73%, 73.50%, 82.26% and 73.20%, respectively, and the single segmentation speed reached 33.7[Formula: see text]ms. The LPRNet model has a recognition accuracy of 99.17% and a single image inference speed of 14.7[Formula: see text]ms. At the same time, several mainstream object detection and semantic segmentation algorithms are compared. The experimental results show that the method in this paper greatly improved the accuracy and efficiency of intelligent inspection of substation meter readings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.