Abstract

Advanced high strength steels for automotive applications were designed to achieve a carbide-free bainitic microstructure after conventional thermo-mechanical processing and a continuous annealing treatment. The microstructure obtained consists of ferrite laths interwoven with thin films of untransformed retained austenite. The sufficiently tough matrix and the control of the heterogeneity in the microstructure will allow an optimum combination of strength, ductility, and formability to be achieved. The designed steels reached far higher uniform elongations than that in commercial dual phase steels and martensitic steels with the same range of ultimate tensile strengths. Their formability was found to be appropriate for the production of final parts after cold-stamping or cold-forming. On the other hand, the yield strength/ultimate tensile strengths ratio was found to remain roughly constant (∼0.7). The reduction of area value did not seem to change as a function of overaging temperature, but the V-bending angle and the hole expansion ratio (cut-edge stretching ability) decreased significantly at the bainite holding temperature increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.