Abstract
We describe the design of coded aperture optical elements for the SuperKEKB x-ray beam size monitors. X-ray beam profile monitor are being installed in each ring of SuperKEKB (LER and HER) to provide high resolution bunch-by-bunch, turn-by-turn measurement capability for low emittance tuning, collision tuning and instability measurements. We use two types of optical elements, single-slit (pinhole) and multi-slit optical elements (coded apertures, CA). CA imaging offers greater open aperture than a single pinhole, for greater photon throughput and better statistical resolution for single-shot measurements. X-rays produced by a hard-bend magnet pass through a pinhole or CA optical element onto a detector. The resolution is obtained by calculating the differences between the images recorded by the detector for various simulated beam sizes, for a given number of photons. The CA elements that we have designed for use at SuperKEKB are estimated to provide 1.25-2.25 microns resolution for 10-25 microns of vertical beam sizes at 1 mA bunches. We present the design principle and optimizing process used to optimize the resolution at various beam sizes for SuperKEKB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.