Abstract

BackgroundThe utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids.ResultsFourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C–H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine.ConclusionsIn all the compounds (1a-14b) either neutral O–H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The structure of each compound depends on the dihedral angle between the carboxyl group and the nitrogenous base. All these compounds indicate three main synthons that regularly occur, namely linear heterodimer (HD), heterotrimer (HT) and heterotetramer (LHT).

Highlights

  • The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied

  • Crystal structure description of 5TPCAMPY (1a) 5TPCAMPY crystallizes in P21/c monoclinic space group where the asymmetric unit consists of one molecule of AMPY and two crystallographically independent molecules of 5TPC

  • The carboxylic acid moieties are coplanar with respect to the thiophene ring of the 5TPC resulting in a trimer

Read more

Summary

Introduction

The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neural or ionic synthons are observed. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids (Scheme 1). Instead of the R22(7) heterosynthon a single point synthon is observed (Scheme 2) This R2 2(7) hetero synthon is the most commonly occuring and the reliable recognition pattern between the carboxyl and pyridyl groups [6,31,32]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call