Abstract

New naphtho[2,1,8,7-klmn]xanthene and benzo[kl]xanthene-based intramolecular phosphane–borane frustrated Lewis pairs (FLPs) were investigated in catalyzed H2 activation and CO2 hydrogenation processes. According to DFT predictions at the B3LYP-D3 level, the presence of rigid scaffolds and increased P···B distances in the investigated FLPs lead to a remarkable drop in the energy barrier for CO2 hydrogenation (by up to 19.2 kcal mol−1, compared to the parent dimethylxanthene-based FLP). Furthermore, the energy differences between the transition states for H2 activation and CO2 hydrogenation are significantly reduced, making both processes feasible under relatively mild experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.