Abstract

One of the main advantages of class E amplifiers for RF and microwave applications relies on the inclusion of a shunt capacitance in the tuned output network. At high frequencies, this capacitance is mainly provided by the output parasitic capacitance of the device with perhaps a linear external one for fine adjustments. The device's output capacitance is nonlinear and this influences the design parameters, frequency limit of operation, and performance of the class E amplifier. This paper presents a design method for the class E amplifier with shunt capacitance combining a nonlinear and linear one for any duty cycle, any capacitance's nonlinear dependence parameters, and any loaded quality factor of the tuned network. Nonlinear design with possibly different duty cycles is of relevance to maximize power or, alternatively, frequency utilization of a given device. Experimental, simulated, and compared results are presented to prove this design procedure

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call