Abstract
HIV-1 integrase (IN) catalyzes the integration of viral DNA into the host genome, involving several interactions with the viral and cellular proteins. We have previously identified peptide IN inhibitors derived from the α-helical regions along the dimeric interface of HIV-1 IN. Herein, we show that appropriate hydrocarbon stapling of these peptides to stabilize their helical structure remarkably improves the cell permeability, thus allowing inhibition of the HIV-1 replication in cell culture. Furthermore, the stabilized peptides inhibit the interaction of IN with the cellular cofactor LEDGF/p75. Cellular uptake of the stapled peptide was confirmed in four different cell lines using a fluorescein-labeled analogue. Given their enhanced potency and cell permeability, these stapled peptides can serve as not only lead IN inhibitors but also prototypical biochemical probes or "nanoneedles" for the elucidation of HIV-1 IN dimerization and host cofactor interactions within their native cellular environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.