Abstract
A nature-inspired, integrated computational heuristic paradigm is developed for the piecewise solution of the nonlinear Bratu problem arising in fuel ignition model, electrically conducting solids and related fields, by exploiting the strength of Cascade Artificial Neural Networks (CANN) modeling, optimized with the memetic computing procedure based on global search efficacy of genetic algorithms (GAs), aided with the efficient local search of teaching learning based optimization (TLBO). The proposed technique incorporates the log-sigmoid activation function in the CANN model, trained by GAs hybridized with TLBO, i.e., CANN-GA-TLBO. As a first application of CANN-GA-TLBO, 1D nonlinear Bratu's system represented with a boundary value problem of the second-order ordinary different equation has been solved, which is a benchmark for testing new algorithms. Comparison of the results with exact solution and previously reported solutions, including Adomian decomposition method, Laplace transformed decomposition method, B-Spline method and artificial neural network solutions, confirms the superiority of the designed stochastic solver CANN-GA-TLBO in terms of accuracy and convergence measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.