Abstract

Cage compounds offer a unique opportunity to capture CO2, but a perfect design has been elusive. Herein, we computationally designed cage compounds by using linkers to connect two calix[4]pyrrole units together into a cage for capturing CO2. Quantum mechanical calculations based on dispersion-corrected density functional theory show that the −(CH2)n– linker has an optimal length at n = 5 where the N–H groups from the pyrrole molecules form four H···O interactions with the two terminal O atoms of CO2. The cationic and zwitterionic cages can also achieve high CO2 affinity and CO2/N2 selectivity in the cage cavity compared with previously synthesized cages. Based on the computed potential energy curves of gas entering the cage, we conclude that all the cages are easily accessible by CO2. This work shows that the calix-based cages have great potential for selective CO2 capture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.