Abstract
Antenna arrays based on aperiodic tilings have been shown to exhibit low sidelobe levels and modest bandwidths over which grating lobes are suppressed. In addition, compared to conventional periodic arrays, these arrays are naturally thinned (i.e., mean inter element spacing is greater than ). The generation of these arrays involves placing array elements at the locations of the vertices of an aperiodic tiling. To obtain a realizable design, the entire array is then scaled and truncated to achieve a desired minimum element spacing and aperture size. This paper demonstrates that it is possible to greatly extend the bandwidth of these arrays by incorporating a simple perturbation scheme into the basic array generation process. The implementation of this perturbation scheme is straightforward and it lends itself well to being combined with an optimization technique such as the genetic algorithm. It is successfully used to generate arrays that have large bandwidths (peak sidelobe level dB with no grating lobes) of up to a minimum element spacing of . Moreover, the flexibility of this technique will be further demonstrated by introducing a slight variation of the basic scheme that is capable of generating arrays with extremely wide bandwidths. An example will be presented for an array design that has a bandwidth corresponding to a minimum element spacing of up to .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.