Abstract

In the paper, to achieve total reflection in the short-wavelength near-infrared (NIR) region (780–1100 nm), a broadband NIR reflector using polymer multilayer heterostructure composed of several quarter-wave stacks was proposed. The reflector used two kinds of polymer materials: PMMA and PET with low-refractive-index contrast. Taking the solar power density as the target and the Bragg wavelength of each quarter-wave stack as the variable, a searching method based on arithmetic progression was applied to find the optimal results for broadband NIR reflection. The simulation results show that the broadband NIR reflector can obtain higher total reflectivity with the increase of the number of quarter-wave stacks, and 99.06% total reflectivity in the short-wavelength NIR region can be achieved by the polymer multilayer heterostructure with six quarter-wave stacks. The proposed polymer multilayer heterostructure can be fabricated by the micro–nanomultilayer co-extrusion technology based on torsion lamination, and could be applied in agriculture as NIR-blocking films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.