Abstract

Boron carbonitrides (BCN) have been widely concerned in the field of energy storage and conversion. However, the energy storage mechanism of electrical double-layer behavior and their stacked-layer structure severely limit the improvement of capacitance, thereby hindering their further development in energy storage. Therefore, an ultrasonic-ball milling method was first chosen to obtain BCN nanosheets, together with a feasible way of polyaniline (PANI) modification performed to boost the capacitive reaction of BCN nanosheets. For the first time, a BCN-PANI-based symmetric supercapacitor device can reach a high voltage window of 3.0 V when 1 M Et4N·BF4 was chosen as the electrolyte. The working voltage of 3.0 V is three times that of a device with pure PANI with the ultrahigh energy density of 67.1 W h kg−1, superior to most of the reported PANI-based devices. The eminent electrochemical performance provides a promising strategy to pave the way for configuring carbon-based multiple composite electrodes for other energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.