Abstract

The mean-shift algorithm is an iterative method of mode seeking and data clustering based on the kernel density estimator. The blurring mean-shift is an accelerated version which uses the original data only in the first step, then re-smoothes previous estimates. It converges to local centroids, but may suffer from problems of asymptotic bias, which fundamentally depend on the design of its smoothing components. This paper develops nearest-neighbor implementations and data-driven techniques of bandwidth selection, which enhance the clustering performance of the blurring method. These solutions can be applied to the whole class of mean-shift algorithms, including the iterative local mean method. Extended simulation experiments and applications to well known data-sets show the goodness of the blurring estimator with respect to other algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.