Abstract

Lithium‐ion batteries (LIBs) suffer from unsatisfied performance and safety risks mainly because of the separators. Herein, a block copolymer (BCP) composed of robust and electrolyte‐affinitive polysulfone (PSF) and Li+‐affinitive polyethylene glycol (PEG) is rationally designed to prepare a new type of LIB separator. The copolymer is subjected to selective swelling, producing nanoporous membranes with PEG chains enriched along the pore walls. Intriguingly, when used as LIB separators, thus‐produced BCP membranes efficiently integrate the merits of both PSF and PEG chains, endowing the separators thermal resistance as high as 150 °C and excellent wettability. Importantly, the nanoporous separator is able to close the pores with a temperature of 125 °C, offering the battery a thermal shutdown function. The membrane exhibits ultrahigh electrolyte uptake up to 501% and a prominent ionic conductivity of 10.1 mS cm−1 at room temperature. Batteries assembled with these membranes show excellent discharge capacity and C‐rate performance, outperforming batteries assembled from other separators including the extensively used Celgard 2400. This study demonstrates a facile strategy, selective swelling of block copolymer, to engineer high‐performance and safer LIB separators, which is also applicable to produce advanced copolymer‐based separators for other types of batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.