Abstract
This study reveals timber-timber composite joints consisting of glulam pieces and birch plywood plates with three different load-to-face grain angles. Utilizing a similar number of fasteners and arranging the fastener array from narrow to wide, uniaxial tension specimens were manufactured with four different fastener patterns. The thickness of birch plywood was intentionally under-designed so that the failure modes for all connections were net tension failure of birch plywood plates. Thereafter, the influence of the fastener pattern and face grain orientation on the load-bearing capacity and stiffness of the investigated composite joints was studied. The load capacity and nominal strength generally increased when the nail patterns varied from narrow to wide. This observation was associated with the Whitmore effective width theory (load spread angle) in steel gusset plate design. Moreover, to derive valid analytical methods to predict the net-tension capacity of birch plywood plates, the classic spread angle model that assumes rectangular stress blocks and the modified spread angle model that considers the summation of stresses from each fastener row were discussed. Both models were adopted to predict the net tension capacity of investigated specimens at 0°. In addition, the stiffness of joints was measured and compared with slip modulus formulas in Eurocode 5. The measured local stiffness values were found to be independent of the fastener pattern and load-face grain angles. The analytical slip modulus assuming the case without predrilling exhibited a satisfactory prediction, while formulas assuming the case with predrilling tend to give overestimations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.