Abstract

The Interface Region Imaging Spectrograph (IRIS) is a NASA SMall Explorer (SMEX) mission launched onboard a Pegasus™ booster on June 27, 2013. The spacecraft and instrument were designed and built at the Lockheed Martin Space Systems Company. The primary mission goal is to learn how the solar atmosphere is energized. IRIS will obtain high-resolution UV spectra and images in space (0.4 arcsec) and time (1s), focusing on the chromosphere and transition region of our sun, which is a complex interface region between the photosphere and corona. The IRIS instrument uses a Cassegrain telescope to feed a dual spectrograph and slit-jaw imager, which operate in the 133-141 nm and 278-283 nm wavelengths, respectively. Within the spectrograph there are sixteen optics, each requiring subtle mounting features to meet exacting surface figure and stability requirements. This paper covers the opto-mechanical design for the most challenging optic mounts, which include the Collimator, UV Fold Mirrors, and UV Gratings. Although all mounts are unique in size and shape, the fundamental design remains the same. The mounts are highly kinematic, thermally matched, and independent of friction. Their development will be described in detail, starting with the driving requirements and an explanation of the underlying design philosophy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call