Abstract

Low-intensity pulsed ultrasound (LIPUS) assisted bone repair is confirmed effective in clinic. Here, a 3D-printed composite poly(DL-lactic acid)/mesoporous bioactive glass scaffold was constructed for particular use in LIPUS-assisted bone tissue engineering. The scaffolds contain dimethyloxallyl glycine (DMOG) loaded microbubbles in pores, which can be released after implanting via LIPUS stimulation. Local DMOG concentrations are modulated through ultrasound power and processing time. The rat bone marrow-derived mesenchymal stem cells (rBMSCs) on these scaffolds with ultrasound treatment show improved proliferation and early osteogenic differentiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call