Abstract

This paper focuses on the automatic control of aircraft in the longitudinal plane, during landing, by using the linearized dynamics of aircraft, taking into consideration the wind shears and the errors of the sensors. A new robust automatic landing system (ALS) is obtained by means of the H-inf control, the dynamic inversion, an optimal observer, and two reference models providing the aircraft desired velocity and altitude. The theoretical results are validated by numerical simulations for a Boeing 747 landing; the simulation results are very good (Federal Aviation Administration (FAA) accuracy requirements for Category III are met) and show the robustness of the system even in the presence of wind shears and sensor errors. Moreover, the designed control law has the ability to reject the sensor measurement noises and wind shears with low intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call